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Abstract

In this work the nonlinear behaviour of a CSTR in which two exothermic irreversible first-order reactions in series A→ B → C take
place, when the jacket energy balance is incorporated in the CSTR mathematical model, is analyzed. Catastrophe theory is used to study
the parameters with respect to which output multiplicities, input multiplicities, isola formation and disjoint bifurcations may exist. One
main objective of this work is to address the effect of including the jacket energy balance on the nonlinear behaviour of the CSTR. The
results show that the steady-state open-loop nonlinear behaviour of CSTRs, modeled without and with the jacket energy balance, is quite
different. Using the software XPP-AUTO different bifurcation maps were obtained. Five operating regions were characterized. ©2000
Elsevier Science S.A. All rights reserved.
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1. Introduction

Continuous stirred tank reactors (CSTRs) generally
present operational problems due to complex open-loop
nonlinear behaviour in the form of input/output multiplici-
ties, ignition/extinction phenomena, Hopf bifurcations, isola
formation and disjoint bifurcations. Some of these phenom-
ena had been discussed by Aris [1]. These nonlinear char-
acteristics prove the need and the complexity of the control
system design. Results from nonlinear analysis could be
important in order to detect potentially difficult operating
points and to remove them. For instance, in some cases it
may be convenient to operate around an unstable operating
point embedded in a multiplicity region. Operation on this
unstable point could be convenient because product yields
might be higher there. However multiplicity patterns might
be different depending upon modeling assumptions. For in-
stance this means that, even using the same set of parameter
values, a CSTR modeled without and with the jacket energy
balance may result in different multiplicity patterns. This
behaviour has been stressed by Russo and Bequette [10].

Input multiplicities arise when different values of a ma-
nipulated variable (variable chosen as system input) produce
the same value of the variable chosen as system output. One
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problem that may occur when there are input multiplicities
is the possible transition from one steady state to another
steady state without detecting it [8]. This undesired transition
from an operating condition to another could be eliminated
in the system design stage. Besides, there are in the litera-
ture some evidences of connections between input multiplic-
ity and right-half plane zeros [13]. It is important to stress
that the presence of right-half plane zeros limit the achiev-
able closed-loop performance, regardless of the control law
used. Output multiplicities also might have an adverse effect
on feedback control performance. This type of multiplici-
ties arise when for the same value of an input variable dif-
ferent responses, of a variable chosen as system output, are
obtained. In this work two other kinds of nonlinearities are
analyzed: isolas and disjoint bifurcations. Isolas correspond
to isolated loops of steady-state solutions [7]. Disjoint bifur-
cations are branches of disconnected steady-state solutions
which emerge when the parameter selected as the continua-
tion parameter takes physical limit values [5]. Fig. 9 in [10]
shows the typical shape of regions of disjoint bifurcations.

Applying singularity theory, Farr and Aris [4] found up
to five steady-states for the series reaction. As consequence
the series reaction might display more complex bifurcation
maps than those exhibited by the single reaction A→ B
which shows up to three steady-states. Most of the published
works on the nonlinear behaviour of CSTRs where the re-
actions A→ B → C take place do not take into account
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the jacket energy balance [2,3,6]. Only recently Russo and
Bequette [10] had shown the impact, on the operability of a
CSTR where the reaction A→ B takes place, of including
the jacket energy balance when modeling CSTR’s. These au-
thors had shown that adding the jacket energy balance to the
modeling phase of chemical reactors have a deep impact on
the open-loop nonlinear behaviour. Recently Russo and Be-
quette [11] conducted a bifurcation analysis on a free-radical
styrene polymerization reactor. Although the kinetic model
becomes more complicated the conclusions reached were
similar to those found previously by the same authors in re-
actors with simpler kinetic models [10]. They also used per-
turbation theory to analyze the way process design changes
affect the amplitude of oscillations when the reactor happens
to operate in a Hopf bifurcation point. In this paper the work
done by Russo and Bequette [10] for a single irreversible
chemical reaction is extended to the case of two irreversible
first order reactions. Most of the basic conclusions related
to this topic were first found by Russo and Bequette [10],
however the case treated in this paper was not considered
by those authors.

The contents of this paper are next outlined. In Section 2 a
description of the mathematical model and the dimensionless
process are shown. In Section 3 theoretical conditions for
the emergence of nonlinear behaviour are mentioned. In this
section the multiplicity analysis is performed for both the
short and full models. In Section 4 the multiplicity results for
both kinds of models are discussed. In Section 5 the nonlin-
ear behaviour obtained for the two modeling approaches, us-
ing the same set of process parameters, is compared. Finally
in Section 6 the main conclusions of this paper are stressed.

2. Process modeling

The mathematical model which describes a CSTR in
which two exothermic irreversible first-order reactions in
series A→ B → C take place is derived from dynamic
material and energy balances. Reactor volume and physical
parameters are assumed to remain constant; perfect mixing
is also assumed. In addition the dynamics of the cooling
jacket is taken into account. The model consists of the
following four nonlinear ordinary differential equations:

dCA

dt
= Q

V
(CAf − CA)− k1(T )CA (1)

Table 1
Dimensionless parameters

x1 = CA/CAfo x3 = ((T − Tfo)/(Tfo))γ x4 = ((Tc − Tfo)/(Tfo))γ x2 = CB/CAfo

γ = E1/RTfo ψ = E2/E1 τ = (Qo/V )t q = Q/Qo

qc = Qc/Qo δ = UA/ρCpQo δ1 = V/Vc δ2 = ρCp/ρcCpc

S = (k2(Tfo))/(k1(Tfo)) φ = (V/Qo)k1(Tfo) β = −1HaCAfoγ /ρCpTfo α = −1Hb/−1Ha

x1f = CAf /CAfo x3f = ((Tf − Tfo)/(Tfo))γ x4f = ((Tcf − Tfo)/Tfo))γ x2f = CBf /CAfo

η(x3) = exp[x3/(1 + (x3/γ ))] η2(x3) = exp[x3/(1 + (x3/γ ))]

dCB

dt
= Q

V
(CBf − CB)− k2(T )CB + k1(T )CA (2)

dT

dt
= Q

V
(Tf − T )+ k1(T )CA

(−1HA)

ρCp

+k2(T )CB
(−1HB)

ρCp
− UA

ρCpV
(T − Tc) (3)

dTc

dt
= Qc

Vc
(Tcf − Tc)+ UA

ρcCpcVc
(T − Tc) (4)

where the kinetic constants are:

k1(T ) = A1e−E1/RT (5)

k2(T ) = A2e−E2/RT (6)

Eqs. (1)–(4) to can be written in dimensionless form as:

dx1

dτ
= q(x1f − x1)− x1η(x3)φ (7)

dx2

dτ
= q(x2f − x2)− x2φSη2(x3)+ x1φη(x3) (8)

dx3

dτ
= q(x3f − x3)+ δ(x4 − x3)

+βφ[x1η(x3)+ αx2η2(x3)S] (9)

dx4

dτ
= δ1(qc(x4f − x4)+ δδ2(x3 − x4)) (10)

wherex1 is the dimensionless concentration of reactant A,
x2 is the dimensionless concentration of reactant B,x3 is the
dimensionless reactor temperature andx4 is the dimension-
less cooling jacket temperature. Other dimensionless param-
eters are defined in Table 1. In this work the phraseshort
modelstands for the CSTR mathematical model without in-
cluding the jacket energy balance (Eqs. (1)–(3)), while the
term full modelwill refer to the CSTR model including the
jacket energy balance (Eqs. (1)–(4)).

3. Steady state multiplicity

In this section theoretical conditions for the existence of a
class of nonlinear behaviour are addressed. Suppose a given
function:

g(x, u) = 0 (11)



A.E. Gamboa-Torres, A. Flores-Tlacuahuac / Chemical Engineering Journal 77 (2000) 153–164 155

whereu stands for an input parameter andx stands for an
output parameter (or system state). Then from the implicit
function theorem the necessary conditions for the existence
of output multiplicity, input multiplicity, and isolas are given
by:

g = ∂g

∂x
= 0 (12)

g = ∂g

∂u
= 0 (13)

g = ∂g

∂x
= ∂g

∂u
= 0 (14)

respectively. The number of output multiplicities can be eval-
uated from catastrophe theory [9]. If:

g = ∂g

∂x
= ∂2g

∂x2
= · · · = ∂ng

∂xn
= 0 (15)

and

∂n+1g

∂xn+1
6= 0 (16)

thenn + 1 output multiplicities will exist around the codi-
mensionn singular pointx which is a solution of Eq. (15).
Next, in order to detect input/output multiplicity and isolas
formation, the theoretical conditions mentioned in this part
are applied to both the short and full models.

3.1. Short model

In order to detect potential nonlinear behaviour the di-
mensionless model must be combined into a single algebraic
equation. Under steady-state conditions Eqs. (7) and (8) can
be solved forx1 andx2, respectively. If these equations are
substituted into Eq. (9) then the following single algebraic
equation will be obtained:

g(x3)= q(x3f − x3)+ δ(x4 − x3)

+βφ
[
qx1fη

q + ηφ
+ αηSq

q + η2Sφ

(
x1fηφ

q + ηφ
+ x2f

)]
(17)

3.1.1. Output multiplicities
In order to analyze the presence of output multiplicities

the first and second derivatives ofg with respect tox3 are
obtained (due to the complexity of the analytical derivatives
only first and second derivatives were examined). All the
derivatives were evaluated using the symbolic manipulation
facilities available in the Matlab Symbolic Math toolbox
[14].

∂g

∂x3
= −q − δ + βφqx1fCηE

I
− βφ2qx1fη

2EC

I2

+βφqx1fη

I

[
αSφηC

K
− αS2φ2ηψCη2

K2

]

+βφαSqx2fCη

K
− βφ2αS2qx2fηψCη2

K2
(18)

∂2g

∂x2
3

= βφqx1fAηE

I
+ βφqx1fC

2ηE

I
− 3

βφ2qx1fC
2η2E

I2

+2
βφqx1fCη

I

[
αSφCη

K
− αS2φ2ηψCη2

K2

]

+2
βφ3qx1fη

3EC2

I3
− 2

βφ2qx1fη
2C

I2

[
αSφCη

K

−αS
2φ2ηψCη2

K2

]
− βφ2qx1fη

2EA

I2

+βφqx1fη

I

(
αSφAη

K
+ αSφC2η

K

−2αS2φ2C2ηψη2

K2
+ 2αS3φ3η(ψC)2η2

2

K3

−αS
2φ2ηψAη2

K2
− αS2φ2ηη2(ψC)

2

K2

)

+βφαSqx2fη

K

(
A+ C2 − 2φSψC2η2

K

+2φ2S2(ψC)2η2
2

K2
−φSAψη2

K
−φS(ψC)

2η2

K

)
(19)

whereA, C, E, K andI are defined as follows:

A = −2

γ (1 + (x3/γ ))2
+ 2x3

γ 2(1 + (x3/γ ))3
(20)

C = 1

1 + (x3/γ )
− x3

γ (1 + (x3/γ ))2
(21)

E = 1 + αSφη

K
(22)

K = q + η2Sφ (23)

I = q + ηφ (24)

Under some conditions these two derivatives could be equal
to zero. The conditions to be fulfilled to guarantee the exis-
tence of three steady-states are given by:

g = ∂g

∂x3
= ∂2g

∂x2
3

= 0 (25)

and

∂3g

∂x3
6= 0 (26)

3.1.2. Input multiplicities
According to the implicit function theorem to guarantee

the presence of input multiplicities the following condition
must be met:

g(x, λ) = ∂g(x, λ)

∂λ
= 0 (27)

whereλ are the system parameters with respect to which the
existence of input multiplicities is suspected, in our case:
λ = [x1f , x3f , x4, q]. Next the analysis to check whether or
not the system exhibits input multiplicities is performed.
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• x1f

∂g

∂x1f
= βφqη

q + ηφ

(
1 + φαηS

q + η2Sφ

)
(28)

In this case taking into account the numerical values that
the parameters could assume the above equation cannot
be equal to zero. Therefore no input multiplicities with
respect to the feedstream concentration can exist.

• x3f

∂g

∂x3f
= q (29)

This equation cannot be equal to zero, unless no reac-
tants are fed to the reactor. This is an impractical situ-
ation. Hence no input multiplicities with respect to the
feedstream temperature are possible.

• x4

∂g

∂x4
= δ (30)

There are no input multiplicities since the parameterδ

cannot be equal to zero, unless the heat transfer coefficient
or the heat transfer area are equal to zero which is an
infeasible situation.

• q

∂g

∂q
= (x3f − x3)+ βφ

[
x1fη

I
− qx1fη

I2
+ αηβS

q + η2φS

− αηβSq

(q + η2φS)2
− αη2Sq

q + η2Sφ

(
x1fφ

I2

)]
(31)

The situation might be different in this case. Under cer-
tain combinations of the value of some parameters the
above first derivative could be equal to zero. Therefore in-
put multiplicities with respect to the volumetric feedrate
might exist.

3.1.3. Isolas
If a given system presents both input and output multi-

plicities, which means it satisfies the equations:

g(x, λ) = ∂g

∂x
= ∂g

∂λ
= 0 (32)

then it might give rise to isola behaviour which corresponds
to isolated operating regions. In our caseλ is the dimension-
less volumetric flowrateq andx corresponds tox3 since it
is the state which respect to which output multiplicities are
present. Hence in order to guarantee the presence of isola
behaviour the following condition must be met:

g(x3, q) = ∂g

∂x3
= ∂g

∂q
= 0 (33)

3.2. Full model

In order to find input/output multiplicity the dimensionless
model must be combined into a single algebraic equation.

Under steady-state conditions Eqs. (7), (8) and (10) can be
solved forx1, x2 andx4, respectively. If these equations are
substituted into Eq. (9) then the following algebraic equation
will be obtained:

h(x3, qc,ppp) = q(x3f − x3)+ δ

(
δδ2x3 + qcx4f

qc + δδ2
− x3

)

+βφ
[
qx1fη

q + ηφ
+ αηSq

q + η2Sφ

(
x1fηφ

q + ηφ
+ x2f

)]
(34)

wherex3 is the controlled output,qc is the manipulated input
andppp is the vector containing the system parameters. This
equation is used to perform the multiplicity analysis.

3.2.1. Output multiplicities
In order to find output multiplicities the implicit function

theorem is applied again. The first and second derivatives of
the single combined nonlinear equationh with respect tox3
are obtained (again due to the complexity of the analytical
derivatives only first and second derivatives were examined).

∂h

∂x3
= −q + δ

(
δδ2

qc + δδ2
− 1

)
+ βφqx1fCηE

I

−βφ
2qx1fη

2EC

I2
+ βφqx1fη

I

[
αSφηC

K

−αS
2φ2ηψCη2

K2

]
+ βφαSqx2fCη

K

−βφ
2αS2qx2fηψCη2

K2
(35)

∂2h

∂x2
3

= βφqx1fAηE

I
+ βφqx1fC

2ηE

I
− 3

βφ2qx1fC
2η2E

I2

+2
βφqx1fCη

I

[
αSφCη

K
− αS2φ2ηψCη2

K2

]

+2
βφ3qx1fη

3EC2

I3
− 2

βφ2qx1fη
2C

I2

[
αSφCη

K

−αS
2φ2ηψCη2

K2

]
− βφ2qx1fη

2EA

I2
+ βφqx1fη

I

×
(
αSφAη

K
+ αSφC2η

K
− 2αS2φ2C2ηψη2

K2

+2αS3φ3η(ψC)2η2
2

K3
− αS2φ2ηψAη2

K2

−αS
2φ2ηη2(ψC)

2

K2

)
+ βφαSqx2fη

K

(
A+ C2

−2φSψC2η2

K
+ 2φ2S2(ψC)2η2

2

K2
− φSAψη2

K

−φS(ψC)
2η2

K

)
(36)

whereA,C,E,K andI are given by Eqs. (20)–(24). Output
multiplicities with respect tox3 are possible since, under
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combination of certain values of the parameters, the next set
of equations might be met:

h = ∂h

∂x3
= ∂2h

∂x2
3

= 0 (37)

and

∂3h

∂x3
3

6= 0 (38)

3.2.2. Input multiplicities
In order to guarantee the presence of input multiplicities

with respect to the vector of paramerersλ, Eq. (27) should
be satisfied.λ will be given by: [x1f , x3f , x4f , q, qc]. Next
we perform the input multiplicity analysis.
• x1f

∂h

∂x1f
= βφqη

q + ηφ

(
1 + φαηS

q + η2Sφ

)
(39)

With the allowed numerical values of the parameters no
input multiplicities exist with respect to the feedstream
concentration of reactant A.

• x3f

∂h

∂x3f
= q (40)

This equation is equal to zero only when there is not vol-
umetric flowrate which is not a feasible condition. So no
input multiplicities exist with respect to the temperature
feedstream.

• x4f

∂h

∂x4f
= δqc

qc + δδ2
(41)

Since the cooling water flowrate, the heat transfer coeffi-
cient or the heat transfer area cannot be equal to zero, no
input multiplicities exist with respect to the dimensionless
cooling water temperature .

• qc

∂h

∂qc
= δx4f

qc + δδ2
− δ(δδ2x3 + qcx4f)

(qc + δδ2)2
(42)

With an appropriate combination of the numerical values
of the parameters, input multiplicities with respect to the
dimensionless cooling water volumetric flowrate might
exist.

• q

∂h

∂q
= (x3f − x3)+ βφ

[
x1fη

I
− qx1fη

I2
+ αηSB

q + η2Sφ

− αηSqB

(q + η2Sφ)2
− αη2Sq

q + η2Sφ

(
x1fφ

I2

)]
(43)

In this case input multiplicities with respect to the vol-
umetric flowrate might exist since, with the appropriate
combination of the numerical values of the parameters,
the above equation could be satisfied.

3.2.3. Isolas
As we said before, in order to get isola behaviour the

following equation must be satisfied:

h(x, λ) = ∂h

∂x
= ∂h

∂λ
= 0 (44)

for the full modelλ = qc andx = x3.

4. Nonlinear analysis results

In this section we show nonlinear behaviour results ob-
tained for the short and full models. All the bifurcation di-
agrams were obtained using the XPP-AUTO software [12].

4.1. Short model

4.1.1. Input multiplicities
From the analysis of Section 3.1 input multiplicities are

only possible when the volumetric flowrateq is the input
or manipulated variable. Therefore input multiplicities only
were looked for with respect to this parameter. For the short
model two differentq values resulted in the same reactor
temperature (Fig. 1). The parameters used in this part are
shown in Table 2. The steady-state multiplicity region can
be decreased or increased by changing theδ parameter, this
parameter is related to the heat transfer area. Whenδ is small
(δ=0.5) the multiplicity region is wide and a maximum is
present. Increasingδ up to 3 the maximum disappears and
a unique region is observed. A reactor operating around
this last region could be safe to operate because changes in
the volumetric feedflowrate lead to small variations in the
reactor temperature. Quite the contrary similar changes in
the former region could lead to operational problems.

Changing the exothermicity of the first reaction the reactor
temperature response is modified (Fig. 2). Since the ratio

Fig. 1. Short model input multiplicity changingδ.
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Table 2
Parameters for input multiplicity using the short model

Figure β φ δ α S ψ γ x1f x2f x3f x4f

1 4.9 0.28 · · · 1.11 0.94 0.35 22.7 0.73 0 0 0
2 · · · 0.28 1.22 1.11 0.94 0.35 22.7 0.73 0 0 0
3 3 1.47 · · · 1.11 1.79 0.89 13 1 0 0.28 0.53

of reaction heats is kept constant (α = 1.11) changes in
theβ parameter mean that the two reactions become more
exothermic simultaneously. By increasing the exothermicity
of both reactions the input multiplicity region, betweenq
andx3, will be wider.

In Fig. 3 input and output multiplicities are shown for
different δ values.δ might be modified changing the heat
transfer area. A region of hysteresis behaviour is also shown
(denoted by dotted lines). In this region the reactor temper-

Fig. 2. Short model input multiplicity changingβ.

Fig. 3. Short model output and input multiplicity changingδ.

ature jumps from the high temperature stable steady-state
to the low temperature stable steady-state. The main differ-
ences between Figs. 3 and 1 are that the second reaction
is faster (S > 1) than the first one, and that the reactant is
more concentrated (x1f = 1) and preheated (x3f = 0.28).
Besides increasing the heat transfer area (δ) leads to remove
the output multiplicities.

4.1.2. Output multiplicities
In this section we analyze the effect of the feedflowrate

and the cooling water temperature on the output multiplicity
behaviour. These two variables were selected because the
implicit function theorem showed that input multiplicities
are only possible when the feedflowrate is taken as the in-
put parameter (besides if output multiplicities are present as
well, isola behaviour could be observed too), and because
we decided to address the effect of including the energy bal-
ance in the modeling process.

Using the dimensionless feedflowrateq as continuation
parameter, and the dimensionless parameters shown in
Table 3, several kinds of behaviours were observed. Input
and output multiplicities are present (Fig. 4). This means
that isolated operating regions should also be observed. Be-
sides, ignition (1.34, 1.17), (2.57, 1.31) and extinction (5.39,
6.15), (7.8, 6.87) points are also present. The appearance of
the isola operating region, as function of theδ parameter,
is also shown in Fig. 4. Increasingq, keepingδ constant, a
unique region is obtained; in this region the reactor temper-
ature is smaller than the reference temperatureTfo.

The effect of changing the reaction exothermicity was also
analyzed (Fig. 5). The ratio of the heats of reaction was kept
constant (α = 1.18). However we also considered the case
when the second reaction becomes more exothermic than the
first one (α > 1). In this situation, and using the parameters
from Table 3, isola formation was not observed; however
input and output multiplicities were present. Such behaviour
could be explained noting that the reactor is not overcooled.
According to Hlavacek and Van Rompay [7] isola behaviour
is generally observed in overcooled systems. In the past
case the dimensionless cooling water temperature wasx4f =
−0.82 while in this casex4f = 0. Output multiplicities give
rise to ignition (2.13, 2.06), (3.22, 1.99), (4.26, 1.94) and
extinction points (2.47, 3.91), (6.51, 5.9), (13.84, 7.33).

Input and output multiplicities were also observed for
changes in the Damkhöler number (Fig. 6). By decreasing
the Damkhöler number an isola region appears. However
with φ = 0.058 a branch of low and high temperature is
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Table 3
Parameters for output multiplicity using the short model

Figure β φ δ q α S ψ γ x1f x2f x3f x4f

4 8.01 0.16 · · · C 0.92 0.84 0.41 19.42 1.06 0 0.13 −0.82
5 · · · 0.17 0.73 C 1.18 1.02 0.34 25.54 0.28 0 0.5 0
6 30 · · · 0.73 C 1.18 1.02 0.34 25.54 0.28 0 0.5 0
7 8.01 0.07 0.3 1 0.92 0.84 0.41 19.42 1.06 0 0.13 C

Fig. 4. Short model input, output multiplicity and isola formation changing
δ.

observed. Isola behaviour is only present for the high tem-
perature region.

Finally output multiplicities with respect to the dimen-
sionless cooling water temperature were analyzed. Fig. 7
shows the existence of output multiplicities. In practical sit-
uations the cooling water temperature is seldom constant
due to the heat transfer characteristics of the process. Con-

Fig. 5. Short model input, output multiplicity changingβ.

Fig. 6. Short model input, output multiplicity and isola formation changing
φ.

stant cooling temperatures might be obtained using a boil-
ing liquid (an usually impractical situation). In terms of pro-
cess control this means that the cooling temperature is not
a good manipulated variable. However, for control purposes
the cooling water flowrate is much easier to handle. There-
fore, during the reactor modeling phase the cooling medium
dynamics should be included.

Fig. 7. Short model output multiplicities usingφ = 0.07.
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4.2. Full model

In order to analyze input/output multiplicities, using the
full order model, the dimensionless cooling water flowrate
qc was used as continuation parameter. We have selected this
parameter since it is easy to manipulate and in addition out-
put multiplicities with respect to the dimensionless cooling
water temperature, using the reduced model, were observed.

In the bifurcation diagrams, obtained plottingx3 versus
qc, up to five different operating regions can be observed.
Region I is a unique region (Fig. 8), while region II (Fig. 9)
is the traditional s-shaped curve denoting ignition and
extinction behaviour.

The presence of constraints (natural or forced) on the
value of the manipulated variables is a well known source
of infeasible operating regions [10]. For instance, in the
limit when qc → 0, infeasible operating regions, known as

Fig. 8. Full model, region I usingβ = 8, φ = 0.02.

Fig. 9. Full model, region II usingβ = 8, φ = 0.06.

Fig. 10. Full model, region III usingβ = 8, φ = 0.04.

“0-disjoint” regions, appear. This sort of regions corresponds
to infeasible low temperature operating regions. Such bi-
furcations are shown as regions III (Fig. 10). Whenqc →
∞ another sort of infeasible operating regions, known as
“∞-disjoint” bifurcations, are present. These sort of bifur-
cations give rise to operating regions denoted as regions IV
(Fig. 11). They represent high temperature infeasible oper-
ating regions. The operating region V (Fig. 12) exhibits both
sort of disjoint bifurcation behaviour. Parameters used for
generating those diagrams are shown in Table 4.

The above five kinds of behaviour might show some vari-
ations if the parameterγ changes its value. This change

Fig. 11. Full model, region IV usingβ = 13, φ = 0.04.

Table 4
Common parameters for the full model

δ q α S ψ δ1 δ2 γ x1f x2f x3f x4f

0.78 1 0.19 1.015 0.32 10 0.952 27.85 1 0 0−1
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Fig. 12. Full model, region V usingβ = 13, φ = 0.03.

could be equivalent to incorporating the exponential approx-
imation in the modeling phase. For instance in the operat-
ing region II up to five steady-states were detected instead
of three steady-states (Fig. 13). Besides Hopf bifurcations,
corresponding to oscillatory solutions, are also shown in
this figure. An open-loop dynamic simulation of the reactor,
starting from a Hopf bifurcation point, is shown in Fig. 14 .

The operating region III also shows some variations. The
“0-disjoint” region is present, but five steady-states were ob-
served (Figs. 15 and 16). Some steady-states were open-loop
unstable. Parameters used for these cases are shown in
Table 5.

It is important to consider that although Byeon and Chung
[2] reported a maximum of 7 steady-states for a CSTR with 2
reactions in series, they did not take into account the cooling
water dynamics and they applied the exponential approxi-
mation. This questions the use of the exponential approxi-

Fig. 13. Full model, region II with 2 Hopf bifurcation points.

Fig. 14. Dynamic simulation starting from a Hopf bifurcation point.

Fig. 15. Full model, variation of region III.

Fig. 16. Full model, variation of region III.
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Table 5
Parameters for changes in the full model

Figure β φ δ q α S ψ δ1 δ2 γ x1f x2f x3f x4f

13 8 0.133 1 1 1 0.01 1 10 1 1000 1 0 0−1
15 12 0.029 1 1 0.6 0.01 1 10 1 1000 1 0 0−1
16 14 0.116 1 1 0.6 0.01 1 10 1 1000 1 0 0−1

mation, since it may give rise to behaviour that cannot be ob-
served if such approximation is not considered. In our study
we have detected up to three steady-states using the full or-
der model and without taking into account the exponential
approximation. Five steady-states were only observed when
the parameterγ was increased which it is equivalent to use
the exponential approximation.

5. Discussion

In this section we discuss and compare the nonlinear be-
haviour implications of the short and full models using sim-
ilar operation and design parameters.

Multiple steady-state behaviour changes if the cooling
jacket energy balance is taken into account. For instance
if the parameters shown in Table 4 are considered (setting
β = 8 andφ = 0.06) then using the short model no output
multiplicity exists between the reactor temperature (x3) and
the cooling water temperature (x4) (Fig. 17), while the full
model exhibits output multiplicity between the reactor tem-
perature and the cooling water flowrate (qc) (Fig. 9). Those
figures show that both the short and full models might exhibit
completely different multiplicity behaviour for the same set
of operation and design parameters.

In order to determine whether or not a given operating re-
gion is feasible, from an operation point of view, we should
analyse if such region might contain disjoint branches of
steady states when the manipulated variable tends to its

Fig. 17. Short model, region I settingβ = 8, φ = 0.06.

Fig. 18. Short model, region I settingβ = 8, φ = 0.04.

boundary values. Those limit values give rise to disjoint bi-
furcartions. For the full model the manipulated variable is
the cooling water flowrate (qc) whose operational limits are
qc = 0 andqc = ∞, this means that disjoint bifurcation
regions were looked for inside this interval.

Using the parameters from Table 4, but changingβ = 8
and φ = 0.04, the short model does not exhibit output
multiplicity behaviour (Fig. 18). However, using the full
model, “0-disjoint” bifurcations can be observed (Fig. 10).
When this sort of bifurcation emerges branches of separated
steady-states are obtained forqc = 0, and , as consequence,
output multiplicity behaviour is also observed.

Again, if the same set of parameters is used, but changing
β = 13 andφ = 0.04, the short model exhibits output
multiplicity behaviour (Fig. 19). However, using the the full
model, “∞-disjoint” operating region (branches of separated
steady-states obtained whenqc = ∞) are predicted (Fig. 11).

Fig. 19. Short model, region II settingβ = 13, φ = 0.04.
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Fig. 20. Short model, region II with Hopf bifurcation points setting
β = 13, φ = 0.03.

Moreover the short model does not change its multiplicity
behaviour if the Damkhöler number is changed toφ = 0.03
(Fig. 20), however Hopf bifurcation points emerge. In this
case the full model exhibits both an 0-disjoint and∞-disjoint
operating regions (Fig. 12).

All the above mentioned differences make it difficult to
use the cooling water temperature as manipulated variable.
However the cooling water flowrate is much easier to ma-
nipulate and in addition it may indicate if a given operating
region is feasible from an operational point of view. The
main conclusion of this part is that the full model should be
used for control purposes.

6. Conclusions

In this paper we have shown that when modeling chem-
ical reactors adding the cooling jacket energy balance may
have a dramatic impact on the multiplicity behaviour. The
full model may be open-loop unstable, due to the presence
of output multiplicities, while the short model might be
open-loop stable due to the fact that, using the same set of
parameters, no output multiplicities are predicted.

Using the short model no input multiplicities and isolas
were detected with respect to the reactor temperature. The
same behaviour was observed for the full model with respect
to the cooling water flowrate. Input multiplicities, which ap-
pear using the short model, between the reactor tempera-
ture and the feed flowrate, may be removed by increasing
the heat transfer area and the heat transfer coefficient. Input
multiplicity regions can be increased if the exothermicity of
the reactions is raised. For the short model output multiplic-
ities may be removed increasing the parameterδ. However
care should be taken of the potential presence of isolas and
a low temperature branch of steady-states using the same
value of the mentioned parameter.

A conclusion from the work performed in this paper is
that the more complicated series reaction is not generically
so different from the simple case considered by Russo and
Bequette [10]. The results reported in this paper could be
interesting for people operating reactors where the series
reactions take place. Using this knowledge a different op-
erating point, where nonlinearities are not exhibited, could
be chosen. From a control point of view, the results of
this paper could provide more specific ideas about potential
closed-loop problems in the form of input/output multiplic-
ities and disjoint bifurcations.

7. Notation

A Heat transfer area
A1 Arrhenius preexponential factor (first reaction)
A2 Arrhenius preexponential factor (second reaction)
CA Mol concentration reactant A
CB Mol concentration of component B
CAf Feedstream concentration of reactant A
CBf Feedstream concentration of component B
Cp Reaction mixture heat capacity
Cpc Cooling medium heat capacity
E1 Activation energy (first reaction)
E2 Activation energy (second reaction)
k1 Constant rate (first reaction)
k2 Constant rate (second reaction)
Q Volumetric feedflowrate
Qc Cooling medium volumetric flowrate
R Ideal gas universal constant
t Time
T Reactor temperature
Tf Feedstream temperature
Tfo Reference temperature of the feedstream
Tc Cooling medium temperature
Tcf Cooling medium feedstream temperature
U Heat transfer coefficient
V Reactor volume
Vc Cooling jacket volume
α Heats of reaction ratio
β Dimensionless heat of reaction A→ B
ρ Reaction mixture density
ρc Cooling medium density
1Ha Heat of reaction of the first reaction A→ B
1Hb Heat of reaction of the second reaction B→ C

References

[1] R. Aris, Chemical reactors and some bifurcation phenomena, Ann.
New York Acad. Sci. (1979) 314–331.

[2] K.H. Byeon, I.J. Chung, Analysis of the multiple Hopf bifurcation
phenomena in a CSTR with two consecutive reactions —
the singularity theory approach, Chem. Eng. Sci. 44(8) (1989)
1735–1742.



164 A.E. Gamboa-Torres, A. Flores-Tlacuahuac / Chemical Engineering Journal 77 (2000) 153–164

[3] E.J. Doedel, R.F. Heinemann, Numerical computation of periodic
solution branches and oscillatory dynamics of the stirred tank reactor
with A → B → C reactions, Chem. Eng. Sci. 38(9) (1983) 1493,
1499.

[4] W.W. Farr, R. Aris, Yet “Who Would have Thought the Old Man
to Have so Much Blood in Him?” —Reflections on the multiplicity
of steady-states of the stirred tank reactor, Chem. Eng. Sci. 41(6)
(1986) 1385–1402.

[5] B.F. Gray, J.H. Merkin, G.C. Wake, Disjoint bifurcation diagrams in
combustion systems, Math. Comp. Modelling 15 (1981) 25–33.

[6] D.C. Halbe, A.B. Poore, Dynamics of the continuous stirred tank
reactor with reactions A→ B → C, Chem. Eng. J. 21 (1981) 241–
253.

[7] V. Hlavacek, P. Van Rompay, On the birth and death of Isolas, Chem.
Eng. Sci. 36(10) (1981) 1730–1731.

[8] L. Koppel, Input multiplicities in nonlinear multivariable control
systems, AICHE. J. 28(6) (1982) 935–945.

[9] T. Poston, I. Stewart, Catastrophe Theory and Its Applications, Dover,
1978.

[10] L. Russo, W. Bequette, Impact of process design on the multiplicity
behaviour of a jacketed exothermic CSTR, AICHE. J. 41(1) (1995)
135–147.

[11] L. Russo, W. Bequette, Operability of chemical reactors: multiplicity
behavior of a jacketed styrene polymerization reactor, Chem. Eng.
Sci. 53(1) (1998) 27–45.

[12] A. Silva, A. Flores, Nonlinear Analysis Using XPP, Proceedings of
the DYCOPS-5 Conference, Corfu, Greece, June, 1998.

[13] P.B. Sistu, B.W. Bequette, Model Predictive Control of Process with
Input Multiplicities, Chem. Eng. Sci. 50(6) (1995) 921–936.

[14] The Mathworks, Matlab Application Toolbox: Symbolic Math, 1997.


